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Abstract. There are three main results in this paper. First, we find an easily
computable and simple condition which is necessary and sufficient for a commut-
ing tuple of contractions to possess a non-zero Toeplitz operator. This condition
is just that the adjoint of the product of the contractions is not pure. On one
hand this brings out the importance of the product of the contractions and on
the other hand, the non-pureness turns out to be equivalent to the existence of a
pseudo-extension to a tuple of commuting unitaries. The second main result is a
commutant pseudo-extension theorem obtained by studying the unique canonical
unitary pseudo-extension of a tuple of commuting contractions. The third one is
about the C∗-algebra generated by the Toeplitz operators determined by a com-
muting tuple of contractions. With the help of a special completely positive map,
a different proof of the existence of the unique canonical unitary pseudo-extension
is given.

1. Introduction

A contraction P acting on a Hilbert space is called pure if P ∗n converges to zero
strongly as n→∞.

Let D be the open unit disk while Dd, Dd
and Td denote the open polydisk, the

closed polydisk, and the d-torus, respectively in d-dimensional complex plane for
d ≥ 2.

The seminal paper [4] of Brown and Halmos introduced the study of those opera-
tors X on the Hardy space which satisfy M∗

zXMz = X where Mz is the unilateral
shift on the Hardy space. These are called Toeplitz operators and have been greatly
studied. Among the many directions in which Toeplitz operators have been gener-
alized, operators X on a Hilbert space H that satisfy P ∗XP = X for a contraction
P on H hold a prime place. Prunaru generalized this to study Toeplitz operators
corresponding to a commuting contractive tuple (also called a d-contraction) in [17].
Prunaru’s techniques are specific to the Euclidean unit ball.
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In connection with the polydisk, the Toeplitz operators that have been well studied
are those which satisfy

M∗
zj
XMzj = X for each j = 1, 2, . . . , d,

where Mzj is multiplication by the coordinate function ‘zj’ on H2(Dd), the Hardy

space over Dd. The class of these Toeplitz operators is large and has been studied
greatly, see [6] and the references therein. Thus the following definition is natural.

Definition 1.1. Let T = (T1, T2, . . . , Td) be a commuting tuple of contractions on a
Hilbert space H. A bounded operator A on H is said to be a T -Toeplitz operator if
it satisfies Brown-Halmos relations with respect to T , i.e.,

T ∗i ATi = A for each 1 ≤ i ≤ d. (1.1)

The ∗–closed and norm closed vector space of all T -Toeplitz operators is denoted by
T (T ).

One of the aims of this note is to answer when this vector space T (T ) is non-trivial,
i.e., contains a non-zero operator. The prime tool for deciding this question is the
product operator.

For a d-tuple T = (T1, T2, . . . , Td) of commuting contractions on a Hilbert space
H, the contraction P = T1T2 · · ·Td will be refereed to as the product contraction of
T .

A remarkable fact in the theory of Hilbert space operators says that a commuting
tuple of isometries extends to a commuting tuple of unitaries. This is true, in partic-
ular, for the shifts Mzj on the Hardy space of the polydisk. A natural question then
arises. Is there a connection between the richness of the class of Toeplitz operators
T (Mz1 ,Mz2 , . . . ,Mzd) on the Hardy space of the polydisk and the fact that the tuple
(Mz1 ,Mz2 , . . . ,Mzd) extends to commuting unitaries? This motivates the definition
below and the theorem following it.

Definition 1.2. Let T = (T1, T2, . . . , Td) be a d-tuple of commuting bounded oper-
ators on a Hilbert space H. A d-tuple U = (U1, U2, . . . , Ud) of commuting bounded
operators on a Hilbert space K is called a pseudo-extension of T , if

(1) there is a non-zero contraction J : H → K, and
(2) JTj = UjJ, for every j = 1, 2, . . . , d.

We denote such a pseudo-extension of T by (J,K, U).
A pseudo-extension (J,K, U) of T is said to be minimal if K is the smallest reducing

space for each Uj containing JH. We say that two pseudo-extensions (J,K, U) and

(J̃, K̃, Ũ) of T are unitarily equivalent if there exists a unitary W : K → K̃ such that

WUj = ŨjW for all j = 1, 2 . . . , d and WJ = J̃.
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A minimal pseudo-extension (J,K, U) of T is called canonical if

J∗J = SOT- limP ∗nP n. (1.2)

The role of the contraction J may need to be emphasized at times and then we
shall say that U is a pseudo-extension of T through J. The condition (2) in the above
definition implies that each Uj is an extension of T̃j : Ran JH → Ran JH densely
defined as

T̃j(Jh) := JTjh, for every h ∈ H.
This is why we call U is a pseudo-extension of T .

A tuple of commuting contractions on a Hilbert space does not possess a unitary
extension, in general. However, existence of a unitary pseudo-extension for a d-tuple
of commuting contraction T can now be characterized in terms of a condition on the
product contraction P of T . This is also intimately related to the non-triviality of
T (T ).

Theorem 1.3. Let T = (T1, T2, . . . , Td) be a d-tuple of commuting contractions on
a Hilbert space H. Then the following are equivalent.

(1) T (T ) is non-trivial.
(2) The adjoint of the product contraction P of T is not pure, i.e., P n 9 0

strongly.
(3) There exists a unique (up to unitary equivalence) canonical unitary pseudo-

extension of the tuple T .

This theorem is proved in section 2.
A fundamental concept, called dilation, introduced by Sz.-Nagy has stimulated

extensive research in operator theory.

Definition 1.4. Let T = (T1, T2, . . . , Td) be a d-tuple of commuting bounded oper-
ators on a Hilbert space H. A d-tuple V = (V1, V2, . . . , Vd) of commuting bounded
operators on a Hilbert space K is called a dilation of T , if H is a subspace of K and
V ∗i |H = T ∗i for i = 1, 2, . . . , d. The dilation is called isometric if Vi are isometries.

It is well-known that a commuting tuple of contractions does not have a commuting
isometric dilation in general. In case T ∗ has a commuting isometric dilation can we
talk of the unitary part of the isometric dilation tuple and is that then an example of
a pseudo-extension to a tuple of commuting unitaries? This question has a gratifying
answer. Recall that the classical Wold decomposition [25] states that any isometry V
acting on a Hilbert space H is unitarily equivalent to the direct sum of a unilateral
shift Mz of multiplicity equal to dim(IH − V V ∗) and a unitary operator U . The
unitary operator U is often regarded as the ‘unitary part’ of the isometry V . Several
attempts have been made to obtain a multivariable analogue of Wold decomposition,



4 BHATTACHARYYA, DAS, AND SAU

see [5, 18, 22, 23] and references therein. Perhaps the most elegant among these
models is the one obtained by Berger, Coburn and Lebow [3], see Theorem 2.3. We
shall use its elegance to analogously define the unitary part of a commuting tuple of
isometries. Then we shall answer the question above affirmatively in Theorem 2.5.

The relation between the existence of a non-zero operator in T (T ) and the exis-
tence of a pseudo-extension (J,K, U) of T goes much further. A study of the unital
C∗-algebra C generated by IH and T (T ) reveals that it has a ∗-representation π onto
the commutant of U , denoted by U ′. In fact, there exists a natural completely iso-
metric cross section ρ of the ∗-representation π that maps onto T (T ). This in turn
proves that T (T ) and U ′ are in one-to-one correspondence. Furthermore, we prove
that every element X in T ′, the commutant of T , can be J-extended to an element
Θ(X) in U ′ and that the correspondence

X 7→ Θ(X)

is completely contractive, unital and multiplicative. This is the content of Theorem
4.3.

2. T -Toeplitz operators and pseudo-extensions

This section has the proof of Theorem 1.3. We shall take up the path (1) =⇒
(2) =⇒ (3) =⇒ (1).

Proof of (1)⇒ (2): Let there be a non-zero T -Toeplitz operator A. This means
that T ∗j ATj = A for all j = 1, 2, . . . , d. This implies P ∗AP = A where P is the
product contraction. Thus, for all n ≥ 0 we have A = P ∗nAP n and hence ‖Ah‖ ≤
‖A‖‖P nh‖ for every vector h. So, if P n strongly converges to 0, then A = 0 which
is a contradiction.

For two hermitian operators T1 and T2, we say that T1 � T2 if T2−T1 is a positive
operator. The following well known result called Douglas’s Lemma has found many
applications.

Lemma 2.1. [Theorem 1, [10]] Let A and B be two bounded operators on a Hilbert
space H. Then there exists a contraction C such that A = BC if and only if

AA∗ � BB∗.

The proof is easy. Indeed, defining C∗ on the range of B∗ as C∗B∗x = A∗x i all
that is required. We shall need it below.
Proof of (2)⇒ (3): Let T = (T1, T2, . . . , Td) be a d-tuple of commuting contractions
such that P n 9 0 strongly. As P is a contraction

IH � P ∗P � P ∗2P 2 � · · · � P ∗nP n � · · · � 0.
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This guarantees a positive contraction Q such that

Q = SOT- limP ∗nP n. (2.1)

The hypothesis makes Q non-zero. From the above expression of Q one can read off
the validity of

P ∗QP = Q.

Hence we can define an isometry X : RanQ→ RanQ satisfying

X : Q
1
2h 7→ Q

1
2Ph for each h ∈ H. (2.2)

We note that

T ∗j QTj � Q for each j = 1, 2, . . . , d. (2.3)

Indeed, since P is the product contraction, we get for each j = 1, 2, . . . , d,

〈T ∗j QTjh, h〉 = lim
n
〈P ∗n(T ∗j Tj)P

nh, h〉 ≤ lim
n
〈P ∗nP nh, h〉 = 〈Qh, h〉.

By Douglas’s Lemma 2.1, we obtain a contraction Xj : RanQ→ RanQ such that for
every h ∈ H,

Xj : Q
1
2h 7→ Q

1
2Tjh for each j = 1, 2, . . . , d. (2.4)

The contractions Xj are commuting because using the commutativity of T we get
for each i, j = 1, 2, . . . , d and h ∈ H,

XiXjQ
1
2h = XiQ

1
2Tjh = Q

1
2TiTjh

= Q
1
2TjTih = XjQ

1
2Tih = XjXiQ

1
2h.

Since P is the product contraction, a computation similar to the one above yields
X = X1X2 · · ·Xd. But X is an isometry. So all of its commuting factors have
to be isometries and hence the contractions Xj have to be isometries. Let W =
(W1,W2, . . . ,Wd) acting on K be a minimal unitary extension of X. Define a con-
traction J : H → K as

J : h 7→ Q
1
2h for every h ∈ H.

The computation below shows that J intertwines each Wj with Tj:

WjJh = WjQ
1
2h = XjQ

1
2h = Q

1
2Tjh = JTjh. (2.5)

Finally, by definition of J and Q, it follows that J∗J is the limit of P ∗nP n in the
strong operator topology and hence (J,K,W ) is a canonical pseudo-extension of T .

For the uniqueness part, let us suppose that (J,K, U = (U1, . . . , Ud)) and (J̃, K̃, Ũ =
(Ũ1, . . . , Ũd)) be two canonical unitary pseudo-extensions of T . We show that these
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two are unitarily equivalent. To that end, let us define the operator τ : K → K̃
densely by

τ : f(U,U∗)Jh 7→ f(Ũ , Ũ
∗
)J̃h

for every h ∈ H and polynomial f in z and z. Since (J̃, K̃, Ũ) is minimal, τ is

surjective. Note that τ clearly satisfies τJ = J̃. We will be done if we can show that
τ is an isometry. Let f be a polynomial in z and z and f̄f =

∑
an,mznzm. Then

for every h ∈ H,

‖f(U,U∗)Jh‖2 =
∑

an,m〈J∗U∗mUnJh, h〉

=
∑

an,m〈T ∗mJ∗JTnh, h〉

=
∑

an,m〈T ∗mQTnh, h〉. (2.6)

Since the last term only depends on the d-tuple T , τ is an isometry.
Proof of (3) ⇒ (1): Note that if a d-tuple T = (T1, T2, . . . , Td) of commuting
contractions has even an isometric pseudo-extension V = (V1, V2, . . . , Vd) through J,
then for all j = 1, · · · , d

T ∗j J
∗JTj = J∗V ∗j VjJ = J∗J.

This proves that the non-zero operator J∗J belongs to T (T ). This in particular
establishes that (3) implies (1). �

Remarks 2.2. Several remarks are in order.

(1) It follows from the proof of (3) ⇒ (1) of Theorem 1.3 that if a d-tuple T
of commuting contractions has an isometric pseudo-extension, then it has a
canonical unitary pseudo-extension. Indeed, if (P,L,W ) is any isometric
pseudo-extension of T , then as observed in the proof of (3)⇒ (1) of Theorem
1.3, the non-zero operator P∗P is a T -Toeplitz operator. Hence by Theorem
1.3 there exists a canonical unitary pseudo-extension of T .

(2) Let T be a contraction acting on a Hilbert space H. It is known that the min-
imal unitary (or isometric) dilation space of T is always infinite dimensional
even in the case when H is finite dimensional. We observe that, unlike the
case of the dilation theory, if T is a d-tuple of commuting contraction act-
ing on a finite dimensional Hilbert space, then the canonical unitary pseudo-
extension space for T is also finite dimensional. Since any two canonical uni-
tary pseudo-extensions of a given tuple are unitarily equivalent, we consider
the canonical unitary pseudo-extension constructed in the proof of (2)⇒ (3)
of Theorem 1.3. Recall that for each j = 1, 2, . . . , d, the isometry Xj as de-
fined in (2.4) is itself a unitary because it acts on a finite dimensional space,



TOEPLITZ OPERATORS AND PSEUDO-EXTENSIONS 7

viz., RanQ. Therefore the tuple X = (X1, X2, . . . , Xd) acting on RanQ is a
canonical unitary pseudo-extension of T .

(3) We also observe that a d-tuple T of commuting contractions has a unitary
pseudo-extension through an isometry J if and only if T is a commuting
tuple of isometries. Thus, Theorem 1.3 subsumes the standard extension of
commuting isometries to commuting unitaries as a special case.

We now link pseudo-extension of T with isometric dilation of T ∗ when it exists.
To that end, we need an old result of Berger, Coburn and Lebow which has gained
a lot of attention recently. Indeed it is the result of Berger, Coburn and Lebow that
inspired explicit constructions of Andô dilation in [8] for a special case and then in
[20] for the general case.

Theorem 2.3 (Theorem 3.1, [3]). Let (V1, V2, . . . , Vd) be a d-tuple of commuting
isometries acting on a Hilbert space K. Then there exist Hilbert spaces E and F ,
unitary operators U = {U1, . . . , Ud} and projection operators P = {P1, . . . , Pd} acting
on E, and commuting unitary operators W = {W1, . . . ,Wd} acting on F such that
K can be decomposed as

K = H2(E)⊕F (2.7)

and with respect to this decomposition

Vj = MUj(P⊥j +zPj)
⊕Wj, V(j) = M(Pj+zP⊥j )U∗j

⊕W(j) for 1 ≤ j ≤ d, (2.8)

and V = V1V2 · · ·Vd = Mz ⊕W1W2 · · ·Wd, (2.9)

where V(j) =
∏
i 6=j

Vi and W(j) =
∏
i 6=j

Wi.

The decomposition (2.9) of the product isometry V = V1V2 · · ·Vd with respect
to (2.7) is actually the same as the Wold decomposition of V . It is remarkable that
the Wold decomposition of V reduces each of its commuting factors into the direct
sum of two operators.

Definition 2.4. For a d-tuple V = (V1, V2, . . . , Vd) of commuting isometries, the
d-tuple W = (W1,W2, . . . ,Wd) of commuting unitaries obtained in Theorem 2.3 is
called the unitary part of V .

The following theorem relates pseudo-extensions with dilation theory and also
provide examples of non-canonical pseudo-extensions.

Theorem 2.5. For a d-tuple of commuting contractions T on H, if T ∗ has a min-
imal isometric dilation V = (V1, V2, . . . , Vd) on K with non-zero unitary part U =
(U1, U2, . . . , Ud) acting on F ⊆ K then U is a unitary pseudo-extension of T .
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Proof. To prove U is a unitary pseudo-extension of T , the required contraction J :
H → K is defined as

J : h→ PFh, (h ∈ H)

where PF denotes the orthogonal projection of K onto F . Since V is minimal, F
cannot be orthogonal to H and hence J is non-zero. Since each V ∗j is an extension
of Tj and since F is reducing for each Vj, we get

U∗j Jh = V ∗j PFh = PFV
∗
j h = PFTjh = JTjh

for each h in H. This completes the proof. �

Remark 2.6. We observed that the unitary pseudo-extension obtained in Theo-
rem 2.5 is non-canonical, in general, because the contraction J need not satisfy (1.2).
We remark here that for d = 2, there is an explicit construction of dilation whose
unitary part gives rise to the canonical unitary pseudo-extension, see Theorem 3 of
[20].

From the above theorem follows the following corollary.

Corollary 2.7. Let T be a d-tuple of commuting contractions such that

(1) P n → 0 strongly and
(2) T ∗ has an isometric dilation.

Then the unitary part of the minimal isometric dilation of T ∗ is zero.

Proof. Let V be a minimal isometric dilation of T ∗. If the unitary part U of V is non-
zero, then by the above discussion U∗ is a pseudo-extension of T . This contradicts
the fact that P n 9 0 is a necessary and sufficient condition for existence of a pseudo-
extension T . �

We end this section by establishing a relation between a non-canonical unitary
pseudo-extension and the canonical unitary pseudo-extension of a given tuple of
commuting contractions. It shows that any unitary pseudo-extension of a given tuple
of commuting contractions factors through the canonical unitary pseudo-extension.

Proposition 2.8. Let T be a d-tuple of commuting contractions acting on a Hilbert
space H such that P n 9 0 strongly as n → ∞. Let (P,L,W ) be a unitary pseudo-
extension of T . If (J,K, U) is the canonical pseudo-extension of T , then

(1) P∗P ≤ SOT- limP ∗nP n = J∗J and
(2) W is a unitary pseudo-extension of U through a contraction T : K → L such

that TJ = P.

Proof. We have seen in the proof of (3) ⇒ (1) of Theorem 1.3 that if (P,L,W ) is
a unitary pseudo-extension of T , then P∗P is a T -Toeplitz operator. In particular,
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P∗P is in T (P ). This implies

P∗P = P ∗nP∗PP n ≤ P ∗nP n for every n.

This proves part (1) of the proposition.
For part (2) we define the operator T : K → L densely by

T : f(U,U∗)Jh 7→ f(W,W ∗)Ph

for every h ∈ H and polynomial f in z and z. Using part (1) of the proposition, a
similar computation as done in (2.6) yields

‖f(W,W ∗)Ph‖ ≤ ‖f(U,U∗)Jh‖ for every h ∈ H.

This shows that T is not only well-defined but also a contraction. Finally, it readily
follows from the definition of T that it intertwines U and W and that TJ = P. �

3. A commutant pseudo-extension theorem

The classical commutant lifting theorem – first by Sarason [19] for a special case
and later by Sz.-Nagy–Foias (see Theorem 2.3 in [24]) for the general case – is a
profound operator theoretic result with wide-ranging applications especially in the
theory of interpolation. The most general form of this result states that if T is a
contraction with V as its minimal isometric dilation, then any bounded operator X
commuting with T has a norm-preserving lifting to an operator Y that commutes
with V . Here a lifting is defined to be a co-extension. In this section, we prove a
version of the commutant lifting theorem, herein called commutant pseudo-extension
theorem.

Theorem 3.1. Let T be a commuting tuple of contractions and (J,K, U) be its
canonical unitary pseudo-extension. Then every X in the commutant of T has a
pseudo-extension to Y in the commutant of U such that ‖Y ‖ ≤ ‖X‖.

Proof. Let P be the product contraction of T and Q be the limit as in (2.1). The idea
is to obtain a bounded operator X̃ acting on RanQ commuting with each isometry
Xj as defined in (2.4) with norm no greater than ‖X‖ and then apply the standard
commutant extension theorem for commuting isometries.

We first do a simple inner product computation. For every h ∈ H

‖Q
1
2Xh‖2 = 〈X∗QXh, h〉 = lim

n
〈P ∗nX∗XP nh, h〉 ≤ ‖X‖2〈Qh, h〉.

Thus there is a bounded operator X̃ : RanQ→ RanQ such that

X̃ : Q
1
2h 7→ Q

1
2Xh.
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with norm at most ‖X‖. Let j = 1, 2, . . . , d and Xj be the isometry as defined in
(2.4), then for each h ∈ H,

X̃XjQ
1
2h = X̃Q

1
2Tjh = Q

1
2XTjh = Q

1
2TjXh = XjQ

1
2Xh = XjX̃Q

1
2h

showing that X̃ commutes with the tuple X = (X1, X2, . . . , Xd) of commuting isome-
tries. We observed in (2.5) that the minimal unitary extension W acting on K
of X is actually a canonical unitary pseudo-extension of T through a contraction
J : H → K defined as Jh = Q

1
2h. Now by a well-known commutant lifting theo-

rem (see, [2, Proposition 10]), there exists an operator Y in the commutant of W
such that Y |RanQ = X̃ and ‖Y ‖ = ‖X̃‖ ≤ ‖X‖. Finally to show that (J,K, Y ) is a
pseudo-extension of X, we see that for every h ∈ H,

JXh = Q
1
2Xh = X̃Q

1
2h = Y Q

1
2h = Y Jh.

This completes the proof. �

The following intertwining pseudo-extension theorem is easily obtained as a corol-
lary to Theorem 3.1.

Corollary 3.2. Let T and T ′ be two commuting tuples of contractions acting on
H and H′, respectively. Let (J,K, U) and (J′,K′, U ′) be their respective canonical
unitary pseudo-extensions. Then corresponding to any operator X : H → H′ inter-
twining T and T ′ there exists another operator Y : K → K′ such that Y intertwines
U and U ′, Y J = J′X and ‖Y ‖ ≤ ‖X‖.

Proof. Set X̃ := [ 0 0
X 0 ] : H⊕H′ → H⊕H′. Then it is easy to see that X̃ commutes

with T̃j :=
[
Tj 0

0 T ′j

]
: H ⊕ H′ → H ⊕ H′ for each j = 1, 2, . . . , d. Set the unitary

operators Ũj :=
[
Uj 0

0 U ′j

]
: K ⊕ K′ → K ⊕ K′ for each j = 1, 2, . . . , d and denote

Ũ := (Ũ1, Ũ2, . . . , Ũd). Then by hypothesis it is easy to check that (J̃, K̃, Ũ) is a

canonical unitary pseudo extension of T̃ = (T̃1, T̃2, . . . , T̃d), where the contraction J̃
is given by

J̃ =
[
J 0
0 J′

]
: H⊕H′ → K⊕K′ = K̃.

By Theorem 3.1 there exists

Ỹ =
[
Y11 Y12
Y Y22

]
: K ⊕K′ → K⊕K′

such that Ỹ Ũ = Ũ Ỹ , J̃X̃ = Ỹ J̃ and ‖Ỹ ‖ ≤ ‖X̃‖. From these relations of Ỹ , it
follows that Y has all the desired properties. �

Remark 3.3. One disadvantage in the commutant pseudo-extension theorem is that
unlike the classical commutant lifting theorem, the pseudo-extension of a commutant
is not norm-preserving, in general and instead the correspondence X 7→ Y from
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a commutant to its pseudo-extension is only contractive. We shall see in the next
section that this correspondence is actually completely contractive.

4. Algebraic structure of the Toeplitz C∗-algebra

For a d-tuple T of commuting contractions, the Toeplitz C∗-algebra, denote by
C∗(IH, T (T )), is the C∗-algebra generated by IH and the vector space T (T ) of T -
Toeplitz operators. The objective of this section is to study the Toeplitz C∗-algebra,
which leads to an existential proof of the canonical pseudo-extension of T .

We begin with a preparatory lemma that gives us a completely positive map
with certain special properties that we need. The central idea of the proof goes
back to Arveson, see Proposition 5.2 in [1]. For a subnormal operator tuple, in the
multivariable situation, Eschmeier and Everard have proven a similar result by direct
construction, see Section 3 of [11].

Lemma 4.1. Let P be a contraction on the Hilbert space H. Then there exists a
completely positive, completely contractive, idempotent linear map Φ : B(H)→ B(H)
such that RanΦ = T (P ). Moreover, if A,B ∈ B(H) satisfy P ∗(AXB)P = AP ∗XPB
for all X ∈ B(H) then Φ(AXB) = AΦ(X)B. In addition,

Φ(IH) = Q = lim
n→∞

P ∗nP n

where the limit is in the strong operator topology.

Proof. We start by recalling that a Banach limit is a positive linear functional µ :
l∞(N)→ C which is shift invariant in the sense that

µ(x1, x2, . . .) = µ(x2, x3, . . .)

and which extends the natural positive linear functional x 7→ limn→∞ xn defined on
the space of convergent sequences. For X in B(H) and vectors ξ, η in H, consider
the bounded sesqui-linear form

[ξ, η] = µ({〈P ∗XPξ, η〉, 〈P ∗2XP 2ξ, η〉, . . .}).

Since this form gives rise to a bounded operator, let us call that Φ(X). Then Φ :
X 7→ Φ(X) defines a linear map on B(H). Shift invariance of µ gives us that
Ran Φ = T (P ). As a consequence, Φ is idempotent. Other properties of Φ are
straightforward. �

The map Φ obtained above enjoys certain convenient properties as the following
lemma shows. We do not prove it because it is part of the proof of Theorem 3.1 in
Choi and Effros [7]. We have singled out what we need.
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Lemma 4.2 (Choi and Effros). Let Φ : B(H)→ B(H) be a completely positive and
completely contractive map such that Φ ◦Φ = Φ. Then for all X and Y in B(H) we
have

Φ(Φ(X)Y ) = Φ(XΦ(Y )) = Φ(Φ(X)Φ(Y )). (4.1)

We are now ready for the main theorem of this section. The classical Toeplitz
operators – the Toeplitz operators with respect to the unilateral shift on the Hardy
space over the unit disk – are precisely the compressions of the commutant of the
minimal unitary extension of the unilateral shift. Part (1) of the following theorem
– the main result of this section – is a generalization of this result to our context.

Theorem 4.3. Let T = (T1, T2, . . . , Td) be a tuple of commuting contractions acting
on a Hilbert space H such that P n 9 0. There exists a canonical unitary pseudo-
extension (J,K, U) of T such that

(1) Pseudo-compression: The map Γ defined on {U1, . . . , Ud}′ by

Γ(Y ) = J∗Y J,

is a complete isometry onto T (T );
(2) Representation: There exists a surjective unital ∗-representation

π : C∗{IH, T (T )} → {U1, . . . , Ud}′

such that π ◦ Γ = I;
(3) Commutant pseudo-extension: There exists a completely contractive,

unital and multiplicative mapping

Θ : {T1, . . . , Td}′ → {U1, . . . , Ud}′

defined by Θ(X) = π(J∗JX) which satisfies

Θ(X)J = JX.

Proof. We start with the contraction P = T1T2 . . . Td and the idempotent, completely
positive and completely contractive map Φ : B(H)→ B(H) such that

RanΦ = {X ∈ B(H) : P ∗XP = X} = T (P ), (4.2)

as obtained in Lemma 4.1. Let C∗(IH, T (P )) denote the C∗-algebra generated by
T (P ) and IH. We restrict Φ to C∗(IH, T (P )) and continue to call it Φ remembering
that the underlying C∗-algebra on which it acts is now C∗(IH, T (P )).

Let (K, π, J) be the minimal Stinespring dilation of Φ. Thus, K is a Hilbert space,
J : H → K is a bounded operator and π is a unital ∗-representation of C∗(IH, T (P ))
taking values in B(K) such that

Φ(X) = J∗π(X)J for every X ∈ C∗(IH, T (P )). (4.3)

Note that Q = Φ(IH) = J∗J = SOT- limn→∞ P
∗nP n.
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We shall need to go deeper into the properties of the Stinespring triple (K, π, J).
The first property we get is

(P1) U := π(QP ) is a unitary operator. Moreover, JP = UJ and K is the smallest
reducing subspace for U containing JH.

The proof is somewhat long. Since Φ has now been restricted to the C∗-algebra
C∗(IH, T (P )), its kernel is an ideal in C∗(IH, T (P )) by Lemma 4.2 (when Φ is allowed
as a map on whole of B(H), its kernel may not be an ideal). In view of the kernel of
Φ being an ideal, it follows from the construction of the minimal Stinespring dilation
that Ker Φ = Kerπ. Thus

π(X) = π(Φ(X)) for any X ∈ C∗(I, T (P )). (4.4)

This will be used many times. Since π is a representation, a straightforward compu-
tation gives us

U∗π(X)U = π(X) for any X ∈ C∗(I, T (P )).

Since π is unital, we get that U is an isometry. If P ′ is a projection in the weak*
closure of π(C∗(I, T (P ))), then we also have U∗P ′U = P ′ and U∗P ′⊥U = P ′⊥. This
shows that UP ′ = P ′U and therefore

π(X)U = Uπ(X)

for all X ∈ C∗(I, T (P )). In particular, it follows that U is a unitary and

π(C∗(IH, T (P ))) ⊆ {U}′.

We can harvest a quick crucial equality here, viz.,

π(QX)J = JX (4.5)

if X ∈ B(H) commutes with P .
The proof of (4.5) follows from two computations. For every h, h′ ∈ H, we have

〈π(QX)Jh, Jh′〉 = 〈J∗π(QX)Jh, k〉
= 〈Φ(QX)h, h′〉 [using (4.3)]

= 〈QXh, h′〉 [because T (P ) is fixed by Φ] = 〈JXh, Jh′〉

showing that PRanJπ(QX)J = JX. On the other hand,

‖π(QX)Jh‖2 = 〈J∗π(X∗Q2X)Jh, h〉
= 〈Φ(X∗Q2X)h, h〉
= 〈X∗Φ(Q2)Xh, h〉 [by Lemma 4.1]

= 〈X∗QXh, h〉 [by Lemma 4.2] = ‖JXh‖2.
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Consequently, π(QX)J = JX for every X ∈ {P}′. This, in particular, proves that
UJ = JP . To complete the proof of P1, it is required to establish that K is the
smallest reducing subspace for U containing JH. To that end, we consider a map Γ
from Ran π into T (P ) given by

Γ(π(X)) = J∗π(X)J = Φ(X) for all X ∈ C∗(I, T (P )).

It is injective because Ker Φ = Kerπ.
Since Γ◦π = Φ, we have Γ◦π to be idempotent and this coupled with the injectivity

of Γ gives us π ◦ Γ = I on π{C∗(I, T (P ))}. This immediately implies that Γ is a
complete isometry.

Let K0 ⊆ K be the smallest reducing subspace for U containing JH. Let PK0 be
the projection in B(K) onto the space K0. Consider the vector space

PK0{U}′PK0 := {PK0XPK0 : X ∈ {U}′} = {PK0X|K0 ⊕ 0K⊥0 : X ∈ {U}′}.

and the map Γ′ : PK0{U}′PK0 → T (P ) ⊆ B(H) defined by X 7→ J∗XJ. This is
injective.

Indeed, it is easy to check that J∗XJ ∈ T (P ) for X ∈ {U}′. Now if J∗XJ = 0 for
some X ∈ {U}′ then using the identity JP = UJ, we get that

〈Xf(U,U∗)Jh, g(U,U∗)Jk〉 = 0

for any two variable polynomials f and g and h, k ∈ H. This shows that PK0XPK0 =
0 and therefore, Γ′ is injective. For any Y ∈ PK0{U}′PK0 ,

Γ′(PK0π(J∗Y J)PK0 − Y ) = J∗π(J∗Y J)J− J∗Y J = Φ(J∗Y J)− J∗Y J = 0.

Thus, by the injectivity of Γ′, we have

PK0π(C∗(I, T (P )))PK0 = PK0{U}′PK0

In other words, we have a surjective complete contraction

C̃K0 : π(C∗(I, T (P )))→ PK0{U}′PK0 = {PK0X|K0 ⊕ 0K⊥0 : X ∈ {U}′},

defined by X 7→ PK0XPK0 . Since Γ = Γ′ ◦ C̃K0 and Γ is a complete isometry, C̃K0 is
a complete isometry. Then the induced compression map

CK0 : π(C∗(I, T (P )))→ {PK0U |K0}′ ⊆ B(K0), X 7→ PK0X|K0

is a unital complete isometry and therefore a C∗-isomorphism by a result of Kadison
([12]). Hence by the minimality of the Stinespring representation π we have K = K0

and therefore π(C∗(I, T (P ))) = {U}′. This not only completes the proof of P1, but
also proves

(P2) The map Γ : {U}′ → T (P ) defined by Γ(Y ) = J∗Y J, for all Y ∈ {U}′, is
surjective and a complete isometry.
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(P3) The Stinesrping triple (K, π, J) satisfies π ◦ Γ = I. In particular,

π(C∗(IH, T (P ))) = {U}′.
The final property that we shall need is

(P4) The linear map Θ : {P}′ → {U}′ defined by Θ(X) = π(QX) is completely
contractive, unital and multiplicative.

To prove P4, first note that Θ is completely contractive and unital as π(Q) = I.
We have also proved that Θ(X)J = JX for all X ∈ {P}′. Since, for X, Y ∈ {P}′,

Γ(Θ(XY )−Θ(X)Θ(Y )) = J∗JXY − J∗Θ(X)Θ(Y )J = 0,

then by injectivity of Γ we have Θ is multiplicative and this completes the proof of
P4.

Since we have now developed the properties of the Stinespring dilation of Φ in
detail, we are ready to complete the proof of the theorem. Define

Ui := π(QTi) for 1 ≤ i ≤ d.

We observe that
U1U2 · · ·Ud = π(QP ) = U.

Indeed, using the property (P4) above, we get

U = π(QP ) = Θ(P ) = Θ(T1)Θ(T2) · · ·Θ(Td)

= π(QT1)π(QT2) · · · π(QTd) = U1U2 · · ·Ud.

Therefore each Uj is a unitary operator.
That the triple (J,K, U = (U1, U2, . . . , Ud)) is actually a canonical pseudo-extension

of T follows from (4.5) when applied to X = Tj for each j = 1, 2, . . . , d. Minimality
of the pseudo-extension U follows from (P1), which says that K is actually equal to

span{UmJh : h ∈ H and m ∈ Z}.
Let Γ be as in (P2) above. Note that

{U1, U2, . . . , Ud}′ ⊂ {U}′.
Consider the restriction of Γ to {U1, U2, . . . , Ud}′ and continue to denote it by Γ. Since
complete isometry is a hereditary property, to prove part (1), all we have to show is
that Γ(Y ) lands in T (T ), whenever Y is in {U1, U2, . . . , Ud}′ and Γ is surjective. To
that end, let Y ∈ {U1, . . . , Un}′. Then for each j = 1, 2, . . . , d, we see that

T ∗j Γ(Y )Tj = T ∗j J
∗Y JTj = J∗U∗j Y UjJ = J∗Y J = Γ(Y ).

Thus Γ maps {U1, . . . , Ud}′ into T (T ). For proving surjectivity of Γ, let X ∈ T (T ).
This, in particular, implies that X is in T (P ). Applying (P2) again we have an Y in
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{U}′ such that Γ(Y ) = J∗Y J = X. It remains to show that this Y commutes with
each Uj. Since X ∈ T (T ), we have

T ∗j XTj = X for each j = 1, 2, . . . , d

which is the same as T ∗j J
∗Y JTj = J∗Y J. Applying the intertwining property of J,

we get for each j

J∗U∗j Y UjJ = J∗Y J

which is the same as Γ(U∗j Y Uj − Y ) = 0 for each j. Since Γ is an isometry, the
commutativity of Y with each Uj is established. This completes the proof of part
(1).

Part (2) of the Theorem follows from the content of (P3) if we restrict π to
C∗(I, T (T )) and continue to call it π.

For the last part of theorem, let us take Θ as in (P4), i,e.,

Θ(X) = π(QX)

for every X in {P}′. Restrict Θ to {T1, . . . , Td}′ and continue to call it Θ. The aim
is to show that Θ(X) ∈ {U1, . . . , Ud}′ if X ∈ {T1, . . . , Td}′. For this we first observe
that if X commutes with each Tj, then QX is in T (T ). Now the rest of the proof
follows from part (2) of the theorem and (4.5). �
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